University of Tasmania
Browse

File(s) under permanent embargo

Particle size distributions in electrosterically stabilized emulsion polymerization systems: testing the 'mid-chain-radical' hypothesis

journal contribution
posted on 2023-05-18, 08:47 authored by Stuart ThickettStuart Thickett, Morrison, B, Gilbert, RG
It has been found [Thickett, S. C.; Gaborieau, M.; Gilbert, R. G. Macromolecules 2007 ,40, 4710−4720] that rate and characterization data on the seeded growth of latex particles electrosterically stabilized by a “hairy layer” of anchored poly(acrylic acid) (pAA) can be qualitatively and quantitatively explained by mechanistic events involving mid-chain radicals (MCRs). A considerable range of data was found to be consistent with the supposition that these MCRs are formed by abstraction on the pAA during polymerization, and are slow to propagate but quick to terminate, and thus are a cause of radical loss; they may also undergo β-scission leading to secondary particle formation. Results are reported here for four additional types of experiments on the evolution of the particle size distribution (PSD) in these systems; all these experiments have the potential to refute the mechanistic hypothesis. The experiments comprise (i) evolution of the PSD of small particles, (ii) evolution of the PSD in a bimodal system (competitive growth), (iii) growth rates of separate experiments of small and large particles with the same total amount of pAA, and (iv) the amount of secondary nucleation (formation of small particles) with both pAA and also with poly(ethylene oxide) steric stabilizers. In each case, the data are qualitatively and quantitatively consistent with the predictions of the mid-chain-radical mechanisms and thus support the general applicability of this effect.

History

Publication title

Macromolecules

Volume

41

Issue

10

Pagination

3521-3529

ISSN

0024-9297

Department/School

School of Natural Sciences

Publisher

Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2008 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC