University of Tasmania
Browse

File(s) under permanent embargo

Investigation of the doping efficiency of poly(styrene sulfonic acid) in poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) dispersions by capillary electrophoresis

journal contribution
posted on 2023-05-18, 07:29 authored by Diah, AWM, Joselito Quirino, Belcher, W, Holdsworth, CI
CE can efficiently separate poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5-3 EDOT:PSS feed ratio (by weight) exhibiting 72-73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core-shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants.

History

Publication title

Electrophoresis

Volume

35

Issue

14

Pagination

1976-1983

ISSN

0173-0835

Department/School

School of Natural Sciences

Publisher

Wiley-V C H Verlag Gmbh

Place of publication

PO Box 10 11 61, Weinheim, Germany, D-69451

Rights statement

Copyright 2014 Wiley-VCH Verlag

Repository Status

  • Restricted

Socio-economic Objectives

Organic industrial chemicals (excl. resins, rubber and plastics)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC