eCite Digital Repository

Modelling production per unit of food consumed in fish populations


Wiff, R and Barrientos, MA and Milessi, AC and Quiroz, JC and Harwood, J, Modelling production per unit of food consumed in fish populations, Journal of Theoretical Biology, 365 pp. 67-75. ISSN 0022-5193 (2015) [Refereed Article]

Copyright Statement

Copyright 2014 Elsevier Ltd.

DOI: doi:10.1016/j.jtbi.2014.10.004


The ratio of production-to-consumption (ρ) reflects how efficiently a population can transform ingested food into biomass. Usually this ratio is estimated by separately integrating cohort per-recruit production and consumption per unit of biomass. Estimates of ρ from cohort analysis differ from those that consider the whole population, because fish populations are usually composed of cohorts that differ in their relative abundance. Cohort models for ρ also assume a stable age-structure and a constant population size (stationary condition). This may preclude their application to harvested populations, in which variations in fishing mortality and recruitment will affect age-structure. In this paper, we propose a different framework for estimating (ρ) in which production and consumption are modelled simultaneously to produce a population estimator of ρ. Food consumption is inferred from the physiological concepts underpinning the generalised von Bertalanffy growth function (VBGF). This general framework allows the effects of different age-structures to be explored, with a stationary population as a special case. Three models with different complexities, depending mostly on what assumptions are made about age-structure, are explored. The full data model requires knowledge about food assimilation efficiency, parameters of the VBGF and the relative proportion of individuals at age a at time y (Py(a)). A simpler model, which requires less data, is based on the stationary assumption. Model results are compared with estimates from cohort models for ρ using simulated fish populations of different lifespans. The models proposed here were also applied to three fish populations that are targets of commercial fisheries in the south-east Pacific. Uncertainty in the estimation of ρ was evaluated using a resampling approach. Simulation showed that cohort and population models produce different estimates for ρ and those differences depend on lifespan, fishing mortality and recruitment variations. Results from the three case studies show that the population model gives similar estimates to those reported by empirical models in other fish species. This modelling framework allows ρ to be related directly to population length- or age-structure and thus has the potential to improve the biological realism of both population and ecosystem models.

Item Details

Item Type:Refereed Article
Keywords:consumption, Von Bertalanffy growth function, population energetics
Research Division:Mathematical Sciences
Research Group:Applied mathematics
Research Field:Biological mathematics
Objective Division:Animal Production and Animal Primary Products
Objective Group:Fisheries - aquaculture
Objective Field:Fisheries - aquaculture not elsewhere classified
UTAS Author:Quiroz, JC (Mr Juan Quiroz Espinosa)
ID Code:97913
Year Published:2015
Web of Science® Times Cited:2
Deposited By:Sustainable Marine Research Collaboration
Deposited On:2015-01-21
Last Modified:2017-11-01

Repository Staff Only: item control page