eCite Digital Repository

Extracellular organic carbon dynamics during a bottom-ice algal bloom (Antarctica)


Ugalde, SC and Martin, A and Meiners, K and McMinn, A and Ryan, KG, Extracellular organic carbon dynamics during a bottom-ice algal bloom (Antarctica), Aquatic Microbial Ecology, 73, (3) pp. 195-210. ISSN 0948-3055 (2014) [Refereed Article]

Copyright Statement

Copyright 2014 Inter-Research

DOI: doi:10.3354/ame01717


Antarctic fast ice provides a habitat for diverse microbial communities, the biomass of which is mostly dominated by diatoms capable of growing to high standing stocks, particularly at the ice-water interface. While it is known that ice algae exude organic carbon in ecologically significant quantities, the mechanisms behind its distribution and composition are not well understood. This study investigated extracellular organic carbon dynamics, microbial characteristics, and ice algal photophysiology during a bottom-ice algal bloom at McMurdo Sound, Antarctica. Over a 2 wk period (November to December 2011), ice within 15 cm from the ice-water interface was collected and sliced into 9 discrete sections. Over the observational period, the total concentrations of extracellular organic carbon components (dissolved organic carbon [DOC] and total carbohydrates [TCHO]—the  sum of monosaccharides [CHOMono] and polysaccharides [CHOPoly]) increased, and were positively correlated with algal biomass. However, when normalised to chlorophyll a, the proportion of extracellular organic carbon components substantially decreased from initial measurements. Concentrations of DOC generally consisted of <20% TCHO, typically dominated by CHOMono, which decreased from initial measurements. This change was coincident with improved algal photophysiology (maximum quantum yield) and an increase in sea-ice brine volume fraction, indicating an increased capacity for fluid transport between the brine channel matrix and the underlying sea water. Our study supports the suggestion that microbial exudation of organic carbon within the sea-ice habitat is associated with vertical and temporal changes in brine physicochemistry.

Item Details

Item Type:Refereed Article
Keywords:Antarctica, carbohydrates, dissolved organic carbon, micro algae, sea ice
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Marine and estuarine ecology (incl. marine ichthyology)
Objective Division:Environmental Management
Objective Group:Management of Antarctic and Southern Ocean environments
Objective Field:Biodiversity in Antarctic and Southern Ocean environments
UTAS Author:Ugalde, SC (Ms Sarah Ugalde)
UTAS Author:Martin, A (Dr Andrew Martin)
UTAS Author:Meiners, K (Dr Klaus Meiners)
UTAS Author:McMinn, A (Professor Andrew McMinn)
ID Code:97143
Year Published:2014
Web of Science® Times Cited:2
Deposited By:IMAS Research and Education Centre
Deposited On:2014-12-04
Last Modified:2017-11-01

Repository Staff Only: item control page