University of Tasmania
Browse

File(s) under permanent embargo

Strategic double cropping on Vertisols: a viable rainfed cropping option in the Indian SAT to increase productivity and reduce risk

journal contribution
posted on 2023-05-18, 04:20 authored by Nageswara Rao, V, Holger MeinkeHolger Meinke, Craufurd, PQ, David ParsonsDavid Parsons, Kropff, MJ, Anten, NPR, Wani, SP, Rego, TJ

Our study suggests the possibility for transformational change in the productivity and risk profile of some of India's rainfed cropping systems. In the semi-arid regions of Southern India, farmers traditionally crop sorghum or chickpea on Vertisols during the post-rainy season, keeping the fields fallow during the rainy season. This practice avoids land management problems, but limits the potential for crop intensification to increase systems productivity. A long-term (15 year) experiment at ICRISAT demonstrated that cropping during the rainy season is technically feasible, and that grain productivity of double cropped sorghum + chickpea (SCP–SCP) and mung bean + sorghum (MS–MS) sequential systems were higher than their conventional counterparts with rainy season fallow, i.e. fallow + post-rainy sorghum (FS–FS) and fallow + post-rainy chickpea (FS–FCP). Without N application, mean grain yield of post-rainy sorghum in the MS–MS system was significantly greater (2520 kg ha−1 per two-year rotation) than in the FS–FS system (1940 kg ha−1 per two-year rotation), with the added benefit of the mung bean grain yield (1000 kg ha−1 per two-year rotation) from the MS–MS system. In the SCP–SCP system the additional grain yield of rainy sorghum (3400 kg ha−1 per two-year rotation) ensured that the total productivity of this system was greater than all other systems. Double cropping MS–MS and SCP–SCP sequential systems had significantly higher crop N uptake compared to traditional fallow systems at all rates of applied nitrogen (N).

The intensified MS–MS and SCP–SCP sequential systems without any N fertilizer applied recorded a much higher median gross profit of Rs. 20,600 (US $ 375) and Rs. 15,930 (US $ 290) ha−1 yr−1, respectively, compared to Rs. 1560 (US $ 28) ha−1 yr−1) with the FS–FS system. Applying 120 kg of N ha−1 considerably increased the profitability of all systems, lifting median gross profits of the sorghum + chickpea system over Rs. 60,000 (US $ 1091) ha−1 yr−1 and the conventional system to Rs. 20,570 (US $ 374) ha−1 yr−1. The gross profit margin analysis showed that nitrogen is a key input for improving productivity, particularly for the double cropping systems. However, traditional systems are unviable and risky without N application in the variable climates of the semi-arid tropics. Together, our results show that on Vertisols in semi-arid India, double cropping systems increase systems’ productivity, and are financially more profitability and less risky than traditional fallow post-rainy systems while further benefits can be achieved through fertilizer application.

History

Publication title

European Journal of Agronomy

Volume

62

Pagination

26-37

ISSN

1161-0301

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2015 Elsevier

Repository Status

  • Restricted

Socio-economic Objectives

Sorghum