University of Tasmania
Browse

File(s) under permanent embargo

Fine structure of silicoflagellate double skeletons

journal contribution
posted on 2023-05-18, 03:37 authored by McCartney, K, Witkowski, J, Jordan, RW, Daugbjerg, N, Malinverno, E, van Wezel, R, Kano, H, Abe, K, Scott, F, Schweizer, M, Young, JR, Gustaaf HallegraeffGustaaf Hallegraeff, Shiozawa, A
Silicoflagellate double skeletons are commonly considered to be pre-division stages, even though their life cycle is only partially resolved, especially with respect to reproduction. Double skeletons of the modern silicoflagellate genera Dictyocha Ehrenberg, Distephanus Stöhr, and Octactis Schiller are for the first time examined in detail by scanning electron microscopy in order to improve our understanding of how skeletal morphology relates to paired skeletons. A number of genus-specific mechanisms enable sibling skeletons to be held together at their abbasal surfaces, including a zig-zag design of the basal ring achieved via apical structure, strut attachment and pike rotation (in Distephanus and Dictyocha), and the presence of organic material binding the generally planar basal rings (in Octactis). Contrary to what is generally understood, the siblings are not mirror images of one another. Instead, the triple junctions formed by the skeletal elements of each apical structure are transposed across the middle of the dividing cell to produce a copy with the same rotation. Thus, two dome-shaped skeletons represent halves of a more spherical design, which suggests that the role of the silicoflagellate basal ring is to enable double skeleton formation, but the full implications of this have yet to be explored.
Although the purpose of double skeleton formation in silicoflagellates remains unclear, observations from the fossil record indicate that differences in the relative alignment of doublet members can have a high significance for phylogeny. Differences in the doublet structure of living silicoflagellates call for a combined biological and geological perspective of the utility of maintaining Dictyocha, Distephanus and Octactis as separate genera.

History

Publication title

Marine Micropaleontology

Volume

113

Pagination

10-19

ISSN

0377-8398

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2014 Elsevier

Repository Status

  • Restricted

Socio-economic Objectives

Fisheries - aquaculture not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC