University of Tasmania
Browse

File(s) not publicly available

Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches

journal contribution
posted on 2023-05-18, 03:08 authored by Khakzad, N, Faisal KhanFaisal Khan, Amyotte, P
Safety analysis in gas process facilities is necessary to prevent unwanted events that may cause catastrophic accidents. Accident scenario analysis with probability updating is the key to dynamic safety analysis. Although conventional failure assessment techniques such as fault tree (FT) have been used effectively for this purpose, they suffer severe limitations of static structure and uncertainty handling, which are of great significance in process safety analysis. Bayesian network (BN) is an alternative technique with ample potential for application in safety analysis. BNs have a strong similarity to FTs in many respects; however, the distinct advantages making them more suitable than FTs are their ability in explicitly representing the dependencies of events, updating probabilities, and coping with uncertainties. The objective of this paper is to demonstrate the application of BNs in safety analysis of process systems. The first part of the paper shows those modeling aspects that are common between FT and BN, giving preference to BN due to its ability to update probabilities. The second part is devoted to various modeling features of BN, helping to incorporate multi-state variables, dependent failures, functional uncertainty, and expert opinion which are frequently encountered in safety analysis, but cannot be considered by FT. The paper concludes that BN is a superior technique in safety analysis because of its flexible structure, allowing it to fit a wide variety of accident scenarios. © 2011 Elsevier Ltd.

History

Publication title

Reliability Engineering and System Safety

Volume

96

Issue

8

Pagination

925-932

ISSN

0951-8320

Department/School

Australian Maritime College

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable mineral resource activities not elsewhere classified