University of Tasmania
Browse

File(s) under permanent embargo

Acclimation to humidity modifies the link between leaf size and the density of veins and stomata

journal contribution
posted on 2023-05-17, 22:11 authored by Madeline Carins-Murphy, Gregory JordanGregory Jordan, Timothy BrodribbTimothy Brodribb
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid- and vapour-phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one-third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid- and vapour-phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.

Funding

Australian Research Council

History

Publication title

Plant, Cell and Environment

Volume

37

Pagination

124-131

ISSN

1365-3040

Department/School

School of Natural Sciences

Publisher

Wiley-Blackwell Publishing Ltd

Place of publication

Oxford, UK

Rights statement

Copyright 2013 John Wiley & Sons Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC