University of Tasmania
Browse

File(s) under permanent embargo

Turbulent boundary-layer structure of flows over freshwater biofilms

journal contribution
posted on 2023-05-17, 20:23 authored by Walker, JM, Sargison, JE, Alan HendersonAlan Henderson
The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000–8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, ks, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, Rt. The structure of the boundary layer adhered to Townsend’s wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer

Funding

Australian Research Council

Hydro Tasmania

History

Publication title

Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow

Volume

54

Issue

1628

Pagination

1-17

ISSN

0723-4864

Department/School

Australian Maritime College

Publisher

Springer-Verlag

Place of publication

175 Fifth Ave, New York, USA, Ny, 10010

Rights statement

Copyright 2013 Springer-Verlag Berlin Heidelberg

Repository Status

  • Restricted

Socio-economic Objectives

Hydro-electric energy

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC