University of Tasmania
Browse

File(s) under permanent embargo

Overturning circulation driven by breaking internal waves in the deep ocean

journal contribution
posted on 2023-05-17, 19:14 authored by Maxim NikurashinMaxim Nikurashin, Ferrari, R
A global estimate of the water-mass transformation by internal wave-driven mixing in the deep ocean is presented. The estimate is based on the energy conversion from tidal and geostrophic motions into internal waves combined with a turbulent mixing parameterization. We show that internal wave-driven mixing in the deep ocean can sustain 20–30 Sv of water-mass transformation. One third or more of this transformation is attributed to lee waves generated by geostrophic motions flowing over rough topography, primarily in the Southern Ocean. While these results are uncertain due to many assumptions, poorly constrained parameters and data noise that enter in the calculation, the result that lee wave-driven mixing plays an important role in the abyssal ocean circulation is likely robust. The implication is that lee wave-driven mixing should be represented in ocean and climate models, but currently it is not. Citation: Nikurashin, M., and R. Ferrari (2013), Overturning circulation driven by breaking internal waves in the deep ocean, Geophys. Res. Lett., 40, doi:10.1002/grl.50542.

History

Publication title

Geophysical Research Letters

Volume

40

Issue

12

Pagination

3133-3137

ISSN

0094-8276

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2013 American Geophysical Union

Repository Status

  • Restricted

Socio-economic Objectives

Oceanic processes (excl. in the Antarctic and Southern Ocean)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC