University of Tasmania
Browse

File(s) under permanent embargo

A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia

journal contribution
posted on 2023-05-17, 14:03 authored by Grose, MR, Stuart CorneyStuart Corney, Katzfey, JJ, Bennett, JC, Holz, GK, Christopher White, Nathaniel BindoffNathaniel Bindoff
Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.

History

Publication title

Climate Dynamics

Volume

40

Issue

7-8

Pagination

2035-2048

ISSN

0930-7575

Department/School

Institute for Marine and Antarctic Studies

Publisher

Springer-Verlag

Place of publication

175 Fifth Ave, New York, USA, Ny, 10010

Rights statement

Copyright Springer-Verlag 2012

Repository Status

  • Restricted

Socio-economic Objectives

Climate change models

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC