University of Tasmania
Browse

File(s) under permanent embargo

Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995-2009 and implications for storm forecasting

journal contribution
posted on 2023-05-17, 11:55 authored by Richardson, IG, Hilary Cane
We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996-2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that exceeds certain thresholds of Dst or Kp, including the NOAA "G" storm scale, based on maximum values of the southward magnetic field component (B(s)), the solar wind speed (V), and the y component (E(y)) of the solar wind convective electric field E = -V x B, in the ICME or sheath ahead of the ICME. Consistent with previous studies, the geoeffectiveness of an ICME is correlated with B(s) or E(y) approximate to VB(s) in the ICME or sheath, indicating that observations from a solar wind monitor upstream of the Earth are likely to provide the most reliable forecasts of the activity associated with an approaching ICME. There is also a general increase in geoeffectiveness with ICME speed, though the overall event-to-event correlation is weaker than for B(s) and E(y). Nevertheless, using these results, we suggest that the speed of an ICME approaching the Earth inferred, for example, from routine remote sensing by coronagraphs on spacecraft well separated from the Earth or by all-sky imagers, could be used to estimate the likely geoeffectiveness of the ICME (our "comprehensive" ICME database provides a proxy for ICMEs identified in this way) with a longer lead time than may be possible using an upstream monitor.

History

Publication title

Space Weather

Volume

9

Issue

7

Article number

S07005

Number

S07005

Pagination

1-9

ISSN

1542-7390

Department/School

School of Natural Sciences

Publisher

American Geophysical Union

Place of publication

United States

Rights statement

Copyright 2011 American Geophysical Union

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC