eCite Digital Repository

Water masses, ocean fronts, and the structure of Antarctic seabird communities: Putting the eastern Bellingshausen Sea in perspective


Ribic, CA and Ainley, DG and Ford, RG and Fraser, WR and Tynan, CT and Woehler, E, Water masses, ocean fronts, and the structure of Antarctic seabird communities: Putting the eastern Bellingshausen Sea in perspective, Deep-Sea Research. Part 2: Topical Studies in Oceanography, 58, (13-16) pp. 1695-1709. ISSN 0967-0645 (2011) [Refereed Article]

Restricted - Request a copy

Copyright Statement

The definitive version is available at

DOI: doi:10.1016/j.dsr2.2009.09.017


Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relation- ships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April– September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species’ groupings with water masses, and generalized additive models to relate species’ densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Ade´ lie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic- wide, a High Antarctic group dominated by Ade´ lie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

Item Details

Item Type:Refereed Article
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Marine and estuarine ecology (incl. marine ichthyology)
Objective Division:Environmental Management
Objective Group:Terrestrial systems and management
Objective Field:Assessment and management of terrestrial ecosystems
UTAS Author:Woehler, E (Dr Eric Woehler)
ID Code:76787
Year Published:2011
Web of Science® Times Cited:23
Deposited By:Zoology
Deposited On:2012-03-13
Last Modified:2012-04-16
Downloads:4 View Download Statistics

Repository Staff Only: item control page