University of Tasmania
Browse

File(s) under permanent embargo

Heparan sulfates mediate the binding of basic fibroblast growth factor to a specific receptor on neural precursor cells

journal contribution
posted on 2023-05-17, 10:04 authored by Brickman, YG, Ford, MD, David SmallDavid Small, Bartlett, PF, Nurcombe, V
Heparan sulfate proteoglycans are thought to be obligatory for receptor binding and subsequent mitogenic activity of basic fibroblast growth factor (FGF-2). In a previous study (Nurcombe V., Ford, M. D., Wildschut, J., Bartlett, P. F. (1993) Science 260, 103-106) we have shown that primary cultures of mouse neuroepithelial cells and a cell line derived from them, 2.3D, secrete a heparan sulfate proteoglycan with a high affinity for FGF-2. In this study, a combination of affinity chromatography and gel chromatography was used to further isolate heparan sulfate side chains with high affinity for FGF-2. These active chains had an average molecular weight of 18,000-20,000. In order to determine whether heparan sulfate chains with specificity for FGF-2 also displayed selectivity for the different FGF receptors, peptides designed to the heparin-binding region of the receptors were used in competitive inhibition studies. The structure of the predicted heparin-binding domain of the FGF receptor 1 was modeled on the basis of its presumed secondary and tertiary structure homology with immunoglobulin loops. These results suggested that many of the basic residues within the second immunoglobulin loop of the FGF receptor 1 form a basic domain in the molecule and therefore form part of a heparin-binding site. Peptides homologous to this region of FGF receptor 1 were shown to inhibit mitogenesis in 2.3D cells, while those to FGF receptor types 2, 3, and 4 did not. A reverse transcriptase-polymerase chain reaction assay designed to detect expression of the four FGF receptors types demonstrated that FGF receptors 1 and 3 were present on the 2.3D cell line but that receptors 2 and 4 were not. These findings indicate that unique heparan sulfate domains interact with specific cell-surface receptors to direct cellular responses.

History

Publication title

Journal of Biological Chemistry

Volume

270

Issue

42

Pagination

24941-24948

ISSN

0021-9258

Department/School

Menzies Institute for Medical Research

Publisher

Amer Soc Biochemistry Molecular Biology Inc

Place of publication

9650 Rockville Pike, Bethesda, USA, Md, 20814-3996

Rights statement

Copyright 1995 The American Society for Biochemistry and Molecular Biology, Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC