University of Tasmania
Browse

File(s) under permanent embargo

Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin

journal contribution
posted on 2023-05-17, 08:39 authored by Timm, C, Hoernle, K, Werner, R, Hauff, F, van den Bogaard, P, Michael, P, Mike CoffinMike Coffin, Koppers, A
We present 40Ar/39Ar age and geochemical (major and trace element and Sr–Nd–Hf–Pb isotope) data from submarine samples recovered from the basement of the Manihiki Plateau during the R/V Sonne research expedition SO193. The samples, predominately tholeiites, with minor occurrences of basaltic andesites and hawaiites, give a mean age of 124.6 ± 1.6 Ma from four different localities on the plateau. Based on TiO2 content, we define two groups of volcanic rocks that differ in trace element and isotopic compositions. Partial melting modeling suggests that the low-Ti group lavas were derived through large degrees of melting (c. 30%) of a peridotitic source at mantle potential melting temperatures of c. Tp = 1510 °C, more than 100 °C above the ambient mantle potential melting temperature. Since the primary water contents of both groups of lavas are low (0.1–0.3g wt.%) and the source is peridotitic, excess temperature is most likely the reason for the large degrees of melting producing the large volume of plateau basalts, consistent with the involvement of a mantle plume. The incompatible element contents of the low-Ti group lavas show a multistage history with enrichment in the most incompatible elements of a previously highly depleted source. They have isotopic compositions similar to enriched mid-ocean-ridge basalt (EMORB) and similar to the common focal zone (FOZO) component. The high-Ti group lavas have more enriched incompatible element compositions overall. Their isotopic compositions tend towards an enriched mantle (EMI)-type endmember, similar, although less extreme, than lavas from the Pitcairn Islands. The geochemistry of the Manihiki Plateau can best be explained by a plume containing three components: 1) a dominant peridotitic FOZO-type component, 2) delaminated EMI-type subcontinental lithospheric mantle (SCLM), and 3) a HIMU (recycled oceanic crustal)-type component possibly in the form of eclogite/pyroxenite. The similarity in age and geochemical composition of Manihiki, Hikurangi and Ontong Java basement lavas, including volcanism in some adjacent basins, suggests that the Greater Ontong Java Volcanic Event covered c. 1% of the Earth's surface with volcanism.

History

Publication title

Earth and Planetary Science Letters

Volume

304

Issue

1-2

Pagination

135-146

ISSN

0012-821X

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Science Bv

Place of publication

PO Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright © Elsevier 2011 The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences