University of Tasmania
Browse

File(s) under permanent embargo

Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants

journal contribution
posted on 2023-05-17, 05:13 authored by Pandolfi, C, Igor Pottosin, Tracey Cuin, Mancuso, S, Sergey ShabalaSergey Shabala
Polyamine (PA) levels in plants increase considerably under saline conditions. Because such an increase is believed to be beneficial for stress resistance, exogenous application of PAs has often been advocated as a means of ameliorating the detrimental effects of salinity. Results, however, are rather controversial, ranging from a significant amelioration to being ineffective or even toxic. The reasons for this controversy remain elusive. The ability of a root to retain K+ in the presence of NaCl was used as a physiological indicator to evaluate the ameliorative effects of PA. Pre-treatment with 1 mM Spm4+ (spermine), Spd3+ (spermidine) or Put2+ (putrescine) prevented salt-induced K+ leak only in the mature root zone of hydroponically grown maize and Arabidopsis. In contrast, in the distal elongation root zone, PA pre-treatment resulted in an even larger NaCl-induced K+ efflux, with the effect ranging from Spm4+ >Spd3+ = Put2+. A similar sequence has been also reported for H+ pump inhibition, measured for both root zones. It appears that PAs affect cell membrane transporters in a highly specific way, with a relatively narrow ‘window’ in which amelioration is observed. We suggest that the ameliorative affect of PAs is the result of a complex combination of factors which might potentially include PA transport and accumulation in the cell cytosol, their metabolization and the functional expression of the specific target proteins or signaling elements.

History

Publication title

Plant and Cell Physiology

Volume

51

Pagination

422-434

ISSN

0032-0781

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Oxford Univ Press

Place of publication

Great Clarendon St, Oxford, England, Ox2 6Dp

Rights statement

The definitive publisher-authenticated version is available online at: http://www.oxfordjournals.org/

Repository Status

  • Restricted

Socio-economic Objectives

Maize

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC