eCite Digital Repository

Optimising airborne LiDAR positioning and processing for remote area geophysical surveys


Steer, AD, Optimising airborne LiDAR positioning and processing for remote area geophysical surveys, School of Geography & Environmental Studies Conference Abstracts 2010, 28 June 2010, Sandy Bay (2010) [Conference Extract]


Airborne Light Detection and Ranging [LiDAR] is a promising tool for obtaining precise information on surface geophysical features over remote areas, able to measure the range between an aircraft and earth surface very accurately [~2cm at 600m flight altitude] in a wide swath along a flight path. This allows detection of low-elevation features like Antarctic pack ice freeboard or small coastal topography changes. For these applications the instrument must be positioned very accurately, using survey-grade Global Positioning System [GPS] receivers and inertial measurement units. Unfortunately, the applications mentioned are often worst-cases for accurate GPS positioning. Over Antarctic pack ice, fixed ground reference stations usually required for precise GPS positioning are absent. Baseline length dependencies are also prevalent, since surveys take place hundreds of kilometres from GPS reference stations which may also be moving [ship-based]. These factors may also apply for LiDAR surveys over remote islands. This project aims to optimize long-range LiDAR surveying using GPS and inertial data processing; metrics derived from LiDAR data; and photogrammetric positioning techniques. The end product of this research will be the means to generate geophysical data products at accuracies approaching that of the LiDAR instrument from long-range aerial surveys.

Item Details

Item Type:Conference Extract
Research Division:Environmental Sciences
Research Group:Pollution and contamination
Research Field:Pollution and contamination not elsewhere classified
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the environmental sciences
UTAS Author:Steer, AD (Mr Adam Steer)
ID Code:65596
Year Published:2010
Deposited By:Geography and Environmental Studies
Deposited On:2010-11-24
Last Modified:2010-11-24

Repository Staff Only: item control page