University of Tasmania
Browse

File(s) under permanent embargo

Antarctic penguin response to habitat change as Earth's troposphere reaches 2°C above preindustrial levels

journal contribution
posted on 2023-05-17, 02:38 authored by Ainley, D, Russell, J, Jenouvrier, S, Woehler, E, Lyver, PO, Fraser, WR, Kooyman, GL
We assess the response of pack ice penguins, Emperor (Aptenodytes forsteri) and Ade´lie (Pygoscelis adeliae), to habitat variability and, then, by modeling habitat alterations, the qualitative changes to their populations, size and distribution, as Earth’s average tropospheric temperature reaches 28C above preindustrial levels (ca. 1860), the benchmark set by the European Union in efforts to reduce greenhouse gases. First, we assessed models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) on penguin performance duplicating existing conditions in the Southern Ocean. We chose four models appropriate for gauging changes to penguin habitat: GFDL-CM2.1, GFDL-CM2.0, MIROC3.2(hi-res), and MRI-CGCM2.3.2a. Second, we analyzed the composited model ENSEMBLE to estimate the point of 28C warming (2025–2052) and the projected changes to sea ice coverage (extent, persistence, and concentration), sea ice thickness, wind speeds, precipitation, and air temperatures. Third, we considered studies of ancient colonies and sediment cores and some recent modeling, which indicate the (space/time) large/centennial- scale penguin response to habitat limits of all ice or no ice. Then we considered results of statistical modeling at the temporal interannual-decadal scale in regard to penguin response over a continuum of rather complex, meso- to large-scale habitat conditions, some of which have opposing and others interacting effects. The ENSEMBLE meso/decadal-scale output projects a marked narrowing of penguins’ zoogeographic range at the 28C point. Colonies north of 708 S are projected to decrease or disappear: ;50% of Emperor colonies (40% of breeding population) and ;75% of Ade´lie colonies (70% of breeding population), but limited growth might occur south of 738 S. Net change would result largely from positive responses to increase in polynya persistence at high latitudes, overcome by decreases in pack ice cover at lower latitudes and, particularly for Emperors, ice thickness. Ade´lie Penguins might colonize new breeding habitat where concentrated pack ice diverges and/or disintegrating ice shelves expose coastline. Limiting increase will be decreased persistence of pack ice north of the Antarctic Circle, as this species requires daylight in its wintering areas. Ade´lies would be affected negatively by increasing snowfall, predicted to increase in certain areas owing to intrusions of warm, moist marine air due to changes in the Polar Jet Stream.

History

Publication title

Ecological Monographs

Volume

80

Pagination

49-66

ISSN

0012-9615

Department/School

School of Natural Sciences

Publisher

Ecological Soc Amer

Place of publication

1707 H St Nw, Ste 400, Washington, USA, Dc, 20006-

Rights statement

Copyright © 2010 Ecological Society of America

Repository Status

  • Restricted

Socio-economic Objectives

Assessment and management of coastal and estuarine ecosystems

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC