University of Tasmania
Browse

File(s) under permanent embargo

Designing gradient coils with reduced hot spot temperatures

journal contribution
posted on 2023-05-17, 02:35 authored by While, PT, Lawrence ForbesLawrence Forbes, Crozier, S
Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (> 20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems.

History

Publication title

Journal of Magnetic Resonance

Volume

203

Pagination

91-99

ISSN

1090-7807

Department/School

School of Natural Sciences

Publisher

Academic Press Inc Elsevier Science

Place of publication

525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495

Rights statement

The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC