University of Tasmania
Browse
63073.pdf (658.8 kB)

Genome BLAST distance phylogenies inferred from whole plastic and whole mitochondrion genome sequences

Download (658.8 kB)
journal contribution
posted on 2023-05-17, 02:21 authored by Auch, AF, Henz, SR, Barbara HollandBarbara Holland, Goker, M
Background: Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP) strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs) between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. Results: Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. Conclusion: Using the most treelike distance matrices, as judged by their δ values, distance methods are able to recover all major plant lineages, and are more in accordance with Apicomplexa organelles being derived from "green" plastids than from plastids of the "red" type. GBDP-like methods can be used to reliably infer phylogenies from different kinds of genomic data. A framework is established to further develop and improve such methods. δ values are a topologyindependent tool of general use for the development and assessment of distance methods for phylogenetic inference.

History

Publication title

BMC Bioinformatics

Volume

7

Issue

July

Pagination

1-16

ISSN

1471-2105

Department/School

School of Natural Sciences

Publisher

Biomed Central Ltd

Place of publication

236 Grays Inn Road, Floor 6, London, England, WC1X

Rights statement

© 2006 Auch et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC