University of Tasmania
Browse

File(s) not publicly available

Population structure and physiological differentiation of haplotypes of Caloglossa leprieurii (Rhodophyta) in a mangrove intertidal zone

journal contribution
posted on 2023-05-17, 01:09 authored by Zuccarello, G, Yeates, PH, Jeffrey WrightJeffrey Wright, Bartlett, J
Zonation of macroalgae in the intertidal zone has been well documented. However, studies of zonation of macroalgae have predominantly examined the distribution of different species rather than the distribution of variants within a species. This study investigated the spatial variation of plastid haplotypes of the mangrove red alga Caloglossa leprieurii (Montagne) J. Agardh at a site in eastern Australia and tests for physiological differences (growth, photosynthesis) between those haplotypes. RUBISCO spacer plastid haplotypes were scored using single-stranded comformational polymorphism, and the population structure at two sites was examined using a nested sampling design comparing between sites, among transects within sites, and among quadrats within transects. Growth rates at various salinities and light intensities and the photosynthesis-irradiance curves of the three main haplotypes were compared. The two sites showed a high degree of genetic differentiation across a short distance, suggesting limited gene flow. The distribution of haplotypes was patchy and did not reflect a zonation pattern along the intertidal gradient. The three haplotypes were physiologically differentiated with haplotype A, with a lower growth rate and a lower photosynthetic efficiency at higher light intensities. There is some evidence of physiological differentiation between life history phases in C. leprieurii with sporophytes having a higher growth rate than females under most conditions. Our results suggest a correlation between our culture results and our population data. Haplotypes (haplo-type A) and life history phases (gametophytes) with lower performance (growth and photosynthetic efficiency) under our culture conditions were correlated with a minor representation in the field. This is the first study to integrate population-level data with physiological parameters toward an understanding of the distribution and relative abundance of red algal genetic variants.

History

Publication title

Journal of Phycology

Volume

37

Pagination

235-244

ISSN

0022-3646

Department/School

Institute for Marine and Antarctic Studies

Publisher

Blackwell Publishing Inc

Place of publication

350 Main St, Malden, USA, Ma, 02148

Repository Status

  • Restricted

Socio-economic Objectives

Marine biodiversity

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC