University of Tasmania
Browse

File(s) not publicly available

Development of a High Pressure Processing Inactivation Model for Hepatitis A Virus

journal contribution
posted on 2023-05-16, 23:52 authored by Grove, SF, Lee, A, Stewart, CM, Thomas RossThomas Ross
High pressure processing (HPP) inactivation data were obtained for hepatitis A virus (HAV) suspended in buffered growth medium containing salt at either 15 or 30 g/liter. Pressures between 300 and 500 MPa were applied for treatment times of 60 to 600 s. In medium containing 15 g/liter salt, the HAV titer was reduced by approximately 1 and 2 log 50% tissue culture infectious dose units (TC1D50) per ml after 600 s of treatment with 300 and 400 MPa, respectively. Under the same treatment conditions but in medium containing 30 g/liter salt, HAV was reduced by <0.50 log TCID50/ml. HAV was inactivated by>3 log TClD50/ml after treatment with 500 MPa for 300 and 360 s in medium containing 15 and 30 g/liter sa1t, respectively, Weibull and log-linear models were fitted to inactivation data. Individual Weibull curves generally provided a good fit at each pressure and salinity, but the curve shapes were qualitatively inconsistent between treatments, making interpolation between pressures difficult and unreliable. High variability was observed in the inactivation data, but the log-linear model described the entire data set and interpolated between specific treatment conditions. Therefore, this model was evaluated by using high pressure to treat HAV artificially inoculated into Pacific oyster (Crassostrea gigas) homogenate adjusted to 15 or 30 g/liter salinity. The log-linear model generally provided fail-safe predictions at pressures ≥375 MPa and may aid shellfish processors wishing to incorporate HPP into an oyster processing regime. Additional inactivation data with greater reproducibility should be collected to enable expansion of the model and to increase the accuracy of its predictions. © International Association for Food Protection.

History

Publication title

Journal of Food Protection

Volume

72

Issue

7

Pagination

1434-1442

ISSN

0362-028X

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

International Association for Food Protection

Place of publication

United States

Repository Status

  • Restricted

Socio-economic Objectives

Food safety

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC