University of Tasmania
Browse

File(s) under permanent embargo

Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen

journal contribution
posted on 2023-05-16, 22:49 authored by Casciotti, KL, Trull, T, Glover, DM, Diana Davies
Nitrogen supply to surface waters can play an important role in the productivity and ecology of subtropical ecosystems. As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we examined the fluxes of nitrogen into and out of the euphotic zone at station ALOHA in the North Pacific Subtropical Gyre using natural abundance stable isotopic measurements of nitrate (d15NNO3 and d18ONO3 ), as well as sinking and suspended particulate nitrogen (d15NPN). Paralleling the steep gradient in nitrate concentration in the upper thermocline at ALOHA, we observed a steep gradient in d15NNO3 , decreasing from a maximum of +7.1% at 500 meters (m) to +1.5–2.4% at 150m. d18ONO3 values also decreased from +3.0% at 300m to +0.7–0.9% at 150m. The decreases in both d15NNO3 and d18ONO3 require inputs of isotopically ‘‘light’’ nitrate to balance the upward flux of nitrate with high d15NNO3 (and d18ONO3 ). We conclude that both nitrogen fixation and diagenetic alteration of the sinking flux contribute to the decrease in d15NNO3 and d18ONO3 in the upper thermocline at station ALOHA. While nitrogen fixation is required to explain the nitrogen isotope patterns, the rates of nitrogen fixation may be lower than previously estimated. By including high-resolution nitrate isotope measurements in the nitrogen isotope budget for the euphotic zone at ALOHA, we estimate that approximately 25%, rather than 50%, of export production was fueled by N2 fixation during our study. On the other hand, this input of N2-derived production accumulates in the upper thermocline over time, playing a significant role in subtropical nutrient cycling through maintenance of the subsurface nitrate pool. An increase in sinking d15NPN between 150 and 300m, also suggests that fractionation during remineralization contributed to the low d15NNO3 values observed in this depth range by introducing a subsurface nitrate source that is 0.5%lower in d15N than the particle flux exported from the euphotic zone. While the time scale of these observations are currently limited, they highlight the need for inclusion of d15NNO3 measurements in a time series program to allow a broader assessment of the variations in subsurface d15NNO3 values and the links between subsurface nitrate and export flux at station ALOHA.

History

Publication title

Deep-Sea Research Part II : Topical Studies in Oceanography

Volume

55

Issue

14-15

Pagination

1661-1672

ISSN

0967-0645

Department/School

Institute for Marine and Antarctic Studies

Publisher

Pergamon

Place of publication

UK

Rights statement

The definitive version is available at http://www.sciencedirect.com

Repository Status

  • Restricted

Socio-economic Objectives

Measurement and assessment of estuarine water quality

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC