University of Tasmania
Browse

File(s) not publicly available

Fluorinated ethylenepropylene copolymer as a potential capillary material in CE

journal contribution
posted on 2023-05-16, 21:25 authored by Evenhuis, CJ, Yang, W, Johns, CA, Macka, M, Paul HaddadPaul Haddad
In this work, a new generation UV-transparent polymer, fluorinated ethylenepropylene copolymer (FEP) exhibiting a low degree of crystallinity, extruded in dimensions similar to the most commonly used CE capillaries of ∼80 μm id and about 360 μm od was investigated for its use as a CE capillary. FEP is transparent down to the low-UV region, and as fluorinated polymers in general are good electrical insulators and exhibit reasonable heat conductivity, it has considerable potential as a material for electrodriven analysis in capillary or microchip formats. The FEP capillary has been characterised with regard to some important aspects for its use as a CE capillary, including its profile of EOF versus pH, as well as procedures for manipulating EOF by coating the inner capillary wall with various semi-permanent and dynamic layers. The FEP capillaries were tested and compared with fused-silica capillary for the separation of inorganic and small organic ions using conditions involving direct and indirect detection in the low-UV region. Finally, advantages of the use of the FEP capillary for simultaneous detection of a mixture containing nine inorganic cations and anions using indirect photometric detection with a movable light-emitting diode (LED) detector and a novel electrolyte are demonstrated. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

History

Publication title

Electrophoresis

Volume

28

Issue

19

Pagination

3477-3484

ISSN

0173-0835

Department/School

School of Natural Sciences

Publisher

Wiley-VCH

Place of publication

Weinheim

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC