University of Tasmania
Browse
350.pdf (298.13 kB)

Latex-Coated Polymeric Monolithic Ion-Exchange Stationary Phases. 1. Anion-Exchange Capillary Electrochromatography and In-Line Sample Preconcentration in Capillary Electrophoresis

Download (298.13 kB)
journal contribution
posted on 2023-05-16, 17:26 authored by Hutchinson, J, Zakaria, P, Andrew BowieAndrew Bowie, Miroslav MackaMiroslav Macka, Avdalovic, N, Paul HaddadPaul Haddad
A sulfonated methacrylate monolithic polymer has been synthesized inside fused-silica capillaries of diameters 50-533-μm i.d. and coated with 65-nm-diameter fully functionalized quaternary ammonium latex particles (AS18, Dionex Corp.) to form an anion-exchange stationary phase. This stationary phase was used for ion-exchange capillary electrochromatography of inorganic anions in a 75-μm-i.d. capillary with Tris/perchlorate electrolyte and direct UV detection at 195 nm. Seven inorganic anions (bromide, nitrate, iodide, iodate, bromate, thiocyanate, chromate) could be separated over a period of 90 s, and the elution order indicated that both ion exchange and electrophoresis contributed to the separation mechanism. Separation efficiencies of up to 1.66 × 105 plates m-1 were achieved, and the monoliths were stable under pressures of up to 62 MPa. Another latex-coated monolith in a 250-μm-i.d. capillary was used for in-line preconcentration by coupling it to a separation capillary in which the EOF had been reversed using a coating of either a cationic polymer or cationic latex particles. Several capillary volumes of sample were loaded onto the preconcentration monolith, and the analytes (inorganic anions) were then eluted from the monolith with a transient isotachophoretic gradient before being separated by electrophoresis in the separation capillary. Linear calibration curves were obtained for aqueous mixtures of bromide, nitrite, nitrate, and iodide. Recoveries of all analytes except iodide were reduced significantly when the sample matrix contained high levels of chloride. The preconcentration method was applied to the determination of iodide in open ocean water and provided a limit of detection of 75 pM (9.5 ng/L) calculated at a signal-to-noise ratio of 3. The relative standard deviation for migration time and peak area for iodide were 1.1 and 2.7%, respectively (n = 6). Iodide was eluted as an efficient peak, yielding a separation efficiency of 5.13 × 107 plates m-1. This focusing was reproducible for repeated analyses of seawater.

History

Publication title

Analytical Chemistry

Volume

77

Pagination

407-416

ISSN

0003-2700

Department/School

School of Natural Sciences

Publisher

Amercian Chemical Society

Place of publication

Washington

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC