University of Tasmania
Browse
Morris_et_al_2005_(auxin_dynamics_after_decapitation).pdf (258.47 kB)

Auxin Dynamics after Decapitation Are Not Correlated with the Initial Growth of Axillary Buds

Download (258.47 kB)
journal contribution
posted on 2023-05-16, 17:04 authored by Morris, SE, Cox, MCH, John RossJohn Ross, Krisantini, S, Beveridge, CA
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time-frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth. © 2005 American Society of Plant Biologists.

History

Publication title

Plant Physiology

Volume

138

Pagination

1665-1672

ISSN

0032-0889

Department/School

School of Natural Sciences

Publisher

American Society of Plant Biologists

Place of publication

United States

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable plant production not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC