eCite Digital Repository

Species on the move around the Australian coastline: a continental-scale review of climate-driven species redistribution in marine systems

Citation

Gervais, CR and Champion, C and Pecl, GT, Species on the move around the Australian coastline: a continental-scale review of climate-driven species redistribution in marine systems, Global Change Biology, 27, (14) pp. 3200-3217. ISSN 1354-1013 (2021) [Refereed Article]


Preview
PDF (Online first)
2Mb

Preview
PDF
Pending copyright assessment - Request a copy
2Mb

Copyright Statement

2021 American Chemical Society. This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/) which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: doi:10.1111/gcb.15634

Abstract

Climate‐driven changes in the distribution of species are a pervasive and accelerating impact of climate change, and despite increasing research effort in this rapidly emerging field, much remains unknown or poorly understood. We lack a holistic understanding of patterns and processes at local, regional and global scales, with detailed explorations of range shifts in the southern hemisphere particularly under‐represented. Australian waters encompass the world's third largest marine jurisdiction, extending from tropical to sub‐Antarctic climate zones, and have waters warming at rates twice the global average in the north and two to four times in the south. Here, we report the results of a multi‐taxon continent‐wide review describing observed and predicted species redistribution around the Australian coastline, and highlight critical gaps in knowledge impeding our understanding of, and response to, these considerable changes. Since range shifts were first reported in the region in 2003, 198 species from nine Phyla have been documented shifting their distribution, 87.3% of which are shifting poleward. However, there is little standardization of methods or metrics reported in observed or predicted shifts, and both are hindered by a lack of baseline data. Our results demonstrate the importance of historical data sets and underwater visual surveys, and also highlight that approximately one‐fifth of studies incorporated citizen science. These findings emphasize the important role the public has had, and can continue to play, in understanding the impact of climate change. Most documented shifts are of coastal fish species in sub‐tropical and temperate systems, while tropical systems in general were poorly explored. Moreover, most distributional changes are only described at the poleward boundary, with few studies considering changes at the warmer, equatorward range limit. Through identifying knowledge gaps and research limitations, this review highlights future opportunities for strategic research effort to improve the representation of Australian marine species and systems in climate‐impact research.

Item Details

Item Type:Refereed Article
Keywords:citizen science, climate change, ecosystem reorganization, historical data, ocean warming, range contraction, range extension, range shift
Research Division:Environmental Sciences
Research Group:Climate change impacts and adaptation
Research Field:Ecological impacts of climate change and ecological adaptation
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Understanding climate change
Objective Field:Effects of climate change on Australia (excl. social impacts)
UTAS Author:Pecl, GT (Professor Gretta Pecl)
ID Code:144296
Year Published:2021
Web of Science® Times Cited:13
Deposited By:Fisheries and Aquaculture
Deposited On:2021-05-10
Last Modified:2021-06-28
Downloads:0

Repository Staff Only: item control page