University of Tasmania
Browse

File(s) under permanent embargo

Numerical parametric study of medium sized container ship squat

journal contribution
posted on 2023-05-20, 21:51 authored by Zhen Kok, Jonathan DuffyJonathan Duffy, Shuhong ChaiShuhong Chai, Jin, Y, Javanmardi, M
A numerical investigation has been undertaken to study the impact of varying a container ship's principal particulars on squat in shallow water. Initially, a statistical review of the principal particulars of commonly operating container ships is discussed and used to determine the range for length-to-beam ratio (L/B), beam-to-draft ratio (B/T) and block coefficient (CB) to be analysed systematically. Unsteady RANS CFD simulations are adopted to predict the squat of a self-propelled S175 container ship where the approach is successfully verifed and validated against benchmark experimental data. The same methodology is adapted to a KCS hull as a representation of modern container ships and systematic parametric transformations are conducted to study the effect of varying L/B, B/T and CB on squat. The results show that sinkage and trim are inversely related to L/B while sinkage is independent of B/T, but trim is inversely related to B/T. Sinkage is also found to be independent of CB whereas trim magnitude becomes increasingly stern down when CB increases due to the nature of the parametric transformations in this study. It is identified in this study that the relative position of the LCB to the LCF is responsible for the change in trim direction. Most empirical predictions show similar trends for varying L/B and B/T but contradicting trends are observed for varying CB.

History

Publication title

Applied Ocean Research

Volume

109

Article number

102563

Number

102563

Pagination

1-13

ISSN

0141-1187

Department/School

Australian Maritime College

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Rights statement

Copyright 2021 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Higher education; Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC