eCite Digital Repository

NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response

Citation

Karupiah, G and Hunt, NH and King, NJ and Chaudhri, G, NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response, Reviews In Immunogenetics, 2, (3) pp. 387-415. ISSN 1398-1714 (2000) [Substantial Review]


Preview
PDF (NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response)
Pending copyright assessment - Request a copy
28Mb
  

Abstract

Using highly conserved, complex enzyme systems, leukocytes utilize the toxic nature of free radical intermediates, derived from oxygen and nitrogen, to control microbial pathogens as part of the innate immune response. Upon activation, NADPH oxidase generates superoxide anion radicals, which in turn give rise to further reactive oxygen intermediates. Similarly, activated nitric oxide synthase 2 catalyses the production of nitric oxide radicals, which leads to the formation of reactive nitrogen intermediates. Nitrogen- and oxygen-centered reactive intermediates can interact to form further reactive species. In addition, presence of the cationic transporter, Nrampl, may exacerbate the effects of these toxic compounds on invading microbes. While each of these antimicrobial systems can operate independently, the combination of their activities is synergistic in the successful containment of almost all invading pathogens. These systems are activated and modulated by microbial products and a series of temporally expressed cytokines. They also feed directly into the initiation of the adaptive immune response, which culminates in lasting specific immunity. The effector molecules, generated in the early innate immune response, are not specific to the invading pathogen and may also cause damage to the host. It is the critical balance of these processes in the initial stages of infection that determines the outcome of infectious disease.

Item Details

Item Type:Substantial Review
Keywords:Antimicrobial response; reactive oxygen species; nitric oxide
Research Division:Biomedical and Clinical Sciences
Research Group:Immunology
Research Field:Innate immunity
Objective Division:Health
Objective Group:Clinical health
Objective Field:Prevention of human diseases and conditions
UTAS Author:Karupiah, G (Associate Professor Guna Karupiah)
ID Code:142838
Year Published:2000
Deposited By:Medicine
Deposited On:2021-02-12
Last Modified:2021-03-02
Downloads:0

Repository Staff Only: item control page