University of Tasmania
Browse
142809-Novel short-chain quinones to treat vision loss in a rat model of diabetic retinopathy.pdf (3.62 MB)

Novel short-chain quinones to treat vision loss in a rat model of diabetic retinopathy

Download (3.62 MB)
journal contribution
posted on 2023-05-20, 20:59 authored by Daniel, A, Dino PremilovacDino Premilovac, Lisa FoaLisa Foa, Feng, ZK, Shah, K, Zhang, Q, Krystel WoolleyKrystel Woolley, Nicole ByeNicole Bye, Jason SmithJason Smith, Nuri GuvenNuri Guven
Diabetic retinopathy (DR), one of the leading causes of blindness, is mainly diagnosed based on the vascular pathology of the disease. Current treatment options largely focus on this aspect with mostly insufficient therapeutic long-term efficacy. Mounting evidence implicates mitochondrial dysfunction and oxidative stress in the central etiology of DR. Consequently, drug candidates that aim at normalizing mitochondrial function could be an attractive therapeutic approach. This study compared the mitoprotective compounds, idebenone and elamipretide, side-by-side against two novel short-chain quinones (SCQs) in a rat model of DR. The model effectively mimicked type 2 diabetes over 21 weeks. During this period, visual acuity was monitored by measuring optokinetic response (OKR). Vision loss occurred 5-8 weeks after the onset of hyperglycemia. After 10 weeks of hyperglycemia, visual function was reduced by 65%. From this point, the right eyes of the animals were topically treated once daily with the test compounds. The left, untreated eye served as an internal control. Only three weeks of topical treatment significantly restored vision from 35% to 58-80%, while visual acuity of the non-treated eyes continued to deteriorate. Interestingly, the two novel SCQs restored visual acuity better than idebenone or elamipretide. This was also reflected by protection of retinal pathology against oxidative damage, retinal ganglion cell loss, reactive gliosis, vascular leakage, and retinal thinning. Overall, mitoprotective and, in particular, SCQ-based compounds have the potential to be developed into effective and fast-acting drug candidates against DR.

History

Publication title

International Journal of Molecular Sciences

Volume

22

Article number

1016

Number

1016

Pagination

1-17

ISSN

1422-0067

Department/School

School of Health Sciences

Publisher

33498409

Place of publication

Matthaeusstrasse 11, Basel, Switzerland, Ch-4057

Rights statement

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Repository Status

  • Open

Socio-economic Objectives

Treatment of human diseases and conditions

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC