University of Tasmania
Browse
139897 - Pyrite textures, trace elements and sulfur isotope chemistry of Bijaigarh shales, Vindhyan Basin, India and their implications.pdf (6.17 MB)

Pyrite textures, trace elements and sulfur isotope chemistry of Bijaigarh Shales, Vindhyan Basin, India and their implications

Download (6.17 MB)
The Vindhyan Basin in central India preserves a thick (~5 km) sequence of sedimentary and lesser volcanic rocks that provide a valuable archive of a part of the Proterozoic (~1800–900 Ma) in India. Here, we present an analysis of key sedimentary pyrite textures and their trace element and sulfur isotope compositions in the Bijaigarh Shale (1210 ± 52 Ma) in the Vindhyan Supergroup, using reflected light microscopy, LA-ICP-MS and SHRIMP-SI, respectively. A variety of sedimentary pyrite textures (fine-grained disseminated to aggregates, framboids, lags, and possibly microbial pyrite textures) are observed reflecting quiet and strongly anoxic water column conditions punctuated by occasional high-energy events (storm incursions). Key redox sensitive or sensitive to oxidative weathering trace elements (Co, Ni, Zn, Mo, Se) and ratios of (Se/Co, Mo/Co, Zn/Co) measured in sedimentary pyrites from the Bijaigarh Shale are used to infer atmospheric redox conditions during its deposition. Most trace elements are depleted relative to Proterozoic mean values. Sulfur isotope compositions of pyrite, measured using SHRIMP-SI, show an increase in δ34S as we move up stratigraphy with positive δ34S values ranging from 5.9‰ (lower) to 26.08‰ (upper). We propose limited sulphate supply caused the pyrites to incorporate the heavier isotope. Overall, we interpret these low trace element signatures and heavy sulfur isotope compositions to indicate relatively suppressed oxidative weathering on land during the deposition of the Bijaigarh Shale.

Funding

Australian Research Council

History

Publication title

Minerals

Volume

10

Issue

7

Article number

588

Number

588

Pagination

1-21

ISSN

2075-163X

Department/School

School of Natural Sciences

Publisher

MDPI

Place of publication

Switzerland

Rights statement

Copyright 2020 the authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC