University of Tasmania
Browse
139536 - Cold ocean cavity and weak basal melting of the Sorsdal Ice Shelf.pdf (7.11 MB)

Cold ocean cavity and weak basal melting of the Sorsdal Ice Shelf revealed by surveys using autonomous platforms

Download (7.11 MB)
journal contribution
posted on 2023-05-20, 15:22 authored by David Gwyther, Spain, EA, Peter KingPeter King, Damien GuihenDamien Guihen, Guy Williams, Eleri Evans, Susan CookSusan Cook, Richter, O, Benjamin Galton-FenziBenjamin Galton-Fenzi, Richard ColemanRichard Coleman

Basal melting of ice shelves is inherently difficult to quantify through direct observations, yet it is a critical factor controlling Antarctic mass balance and global sea‐level rise. While much research attention is paid to larger ice shelves and those experiencing the most rapid change, many smaller, unstudied ice shelves offer valuable insights. Here, we investigate the oceanographic conditions and melting beneath the Sørsdal ice shelf, East Antarctica. We present results from the 2018/2019 Sørsdal deployment of the University of Tasmania's autonomous underwater vehicle nupiri muka . Oceanography adjacent to and beneath the ice shelf front shows a cold and relatively saline environment dominated by Winter Water and Dense Shelf Water, while bathymetry measurements show a deep (∼1,200 m) trough running into the ice shelf cavity. Two multiyear deployments of Autonomous Phase‐sensitive Radar Echo Sounders on the surface of the ice shelf show weak melt rates (average of 1.6 and 2.3 m yr−1) with low temporal variability. These observations are supported by numerical ocean model and satellite estimates of melting. We speculate that the presence of a ∼825 m thick (350 m to at least 1,175 m) homogeneous layer of cold, dense water blocks access from warmer waters that intrude into Prydz Bay from offshore, resulting in weak melt rates. However, the newly identified trough means that the ice shelf is vulnerable to any decrease in polynya activity that allows warm water to enter the cavity. This could lead to increased basal melting and mass loss through this sector of Antarctica.

History

Publication title

JGR Oceans

Volume

125

Issue

6

Article number

e2019JC015882

Number

e2019JC015882

Pagination

1-17

ISSN

2169-9275

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

Copyright 2020 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Antarctic and Southern Ocean oceanic processes; Climate change models; Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC