University of Tasmania
Browse
137679 - Field observations and physical&%238208;biogeochemical modeling suggest low silicon.pdf (7.66 MB)

Field observations and physical-biogeochemical modeling suggest low silicon affinity for Antarctic fast ice diatoms

Download (7.66 MB)
journal contribution
posted on 2023-05-20, 11:24 authored by Lim, SM, Sebastien MoreauSebastien Moreau, Vancoppenolle, M, Deman, F, Roukaerts, A, Klaus MeinersKlaus Meiners, Janssens, JP, Delphine LannuzelDelphine Lannuzel

We use field observations from late spring and a one‐dimensional sea‐ice model to explore a high nutrient, high chlorophyll system in Antarctic land‐fast ice. Lack of variability in chlorophyll a concentration and organic carbon content over the 17‐day sampling period suggests a balance between macronutrient sources and biological uptake. Nitrate, nitrite, phosphate, and ammonium were measured at concentrations well above salinity‐predicted levels, indicating nutrient accumulation fueled by remineralization processes. However, silicic acid (DSi) was depleted relative to seawater and was potentially limiting. One‐dimensional physical‐biogeochemical sea‐ice model simulations at the observation site achieve extremely high algal growth and DSi uptake with a DSi half‐saturation constant used for pelagic diatoms (KSi = 3.9 μM) and are not sufficiently improved by tuning the DSi:carbon ratio or DSi remineralization rate. In contrast, diatom biomass in the bottom ice, which makes up 70% of the observed chlorophyll, is simulated using KSi an order of magnitude higher (50 μM), a value similar to that measured in a few Antarctic diatom cultures. Some sea‐ice diatoms may therefore experience limitation at relatively high ambient DSi concentrations compared to pelagic diatoms. Our study highlights the urgent need for observational data on sea‐ice algal affinity for DSi to further support this hypothesis. A lower algal growth rate increases model predictions of DSi in the upper sea ice to more accurate concentrations. The model currently does not account for the non‐diatom communities that dominate those layers, and thus, modeling diatom communities overpredicts DSi uptake in the upper ice.

History

Publication title

JGR Oceans

Volume

124

Issue

11

Pagination

7837-7853

ISSN

2169-9275

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

Copyright 2019 American Geophysical Union

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC