University of Tasmania
Browse
137431 - Chromium based polypyrrole.pdf (1.72 MB)

Chromium-based polypyrrole/MIL-101 nanocomposite as an effective sorbent for headspace microextraction of methyl tert-butyl ether in soil samples

Download (1.72 MB)
journal contribution
posted on 2023-05-20, 10:54 authored by Darabi, J, Alireza GhiasvandAlireza Ghiasvand
The performance of headspace solid-phase microextraction (HS-SPME) was upgraded by easy and low-cost preparation of a new nanocomposite fiber. A polypyrrole/chromium-based metal–organic framework, PPy@MIL-101(Cr), nanocomposite was electrochemically synthesized and simultaneously coated on a steel wire as a microextraction sorbent. The morphology and chemical structure of the prepared nanocomposite was characterized by Fourier-transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX) techniques. The microsorbent was used for sampling of methyl-tert-butyl ether (MTBE) in solid samples, through an HS-SPME sampling strategy, followed by GC-FID measurement. The optimal experimental conditions, including extraction temperature, extraction time, and GC desorption conditions, were evaluated and optimized. The proposed procedure showed good sensitivity (limit of detection was 0.01 ng·g-1) and precision (relative standard deviation was 8.4% for six replicated analyses). The calibration curve was linear over the range of 5–40,000 ng·g-1, with a correlation coefficient of 0.994. The limit of quantification was 0.4 ng·g−1. The fabricated fiber exhibited good repeatability and reproducibility for the sampling of MTBE, with average recovery values of 88-114%. The intra-fiber and inter-fiber precisions were found to be 8.4% and 19%, respectively. The results demonstrated the superiority of the PPy@MIL-101(Cr)-coated fiber in comparison with handmade (polypyrrole, PPY) and commercial fibers (polyacrylate, PA; polydimethylsiloxane, PDMS; and divinylbenzene/carboxen/polydimethylsiloxane, DVB/CAR/PDMS) for the analysis of solid samples. The developed method was successfully employed for the analysis of MTBE in different soil samples contaminated by oil products.

History

Publication title

Molecules

Volume

25

Article number

644

Number

644

Pagination

1-12

ISSN

1420-3049

Department/School

School of Natural Sciences

Publisher

Molecular Diversity Preservation International

Place of publication

Matthaeusstrasse 11, Basel, Switzerland, Ch-4057

Rights statement

Copyright 2020 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC