University of Tasmania
Browse
136589 - Multilocus sequence typing (MLST) and Random Polymorphic DNA (RAPD) comparisons.pdf (1.22 MB)

Multilocus sequence typing (MLST) and Random Polymorphic DNA (RAPD) comparisons of geographic isolates of Neoparamoeba perurans, the causative agent of Amoebic Gill Disease

Download (1.22 MB)
journal contribution
posted on 2023-05-20, 09:21 authored by Johnson-Mackinnon, JC, Crosbie, PBB, Karlsbakk, E, Marcos-Lopez, M, Paley, R, Barbara NowakBarbara Nowak, Andrew BridleAndrew Bridle
Neoparamoba perurans, is the aetiological agent of amoebic gill disease (AGD), a disease that affects farmed Atlantic salmon worldwide. Multilocus sequence typing (MLST) and Random Amplified Polymorphic DNA (RAPD) are PCR-based typing methods that allow for the highly reproducible genetic analysis of population structure within microbial species. To the best of our knowledge, this study represents the first use of these typing methods applied to N. perurans with the objective of distinguishing geographical isolates. These analyses were applied to a total of 16 isolates from Australia, Canada, Ireland, Scotland, Norway, and the USA. All the samples from Australia came from farm sites on the island state of Tasmania. Genetic polymorphism among isolates was more evident from the RAPD analysis compared to the MLST that used conserved housekeeping genes. Both techniques consistently identified that isolates of N. perurans from Tasmania, Australia were more similar to each other than to the isolates from other countries. While genetic differences were identified between geographical isolates, a BURST analysis provided no evidence of a founder genotype. This suggests that emerging outbreaks of AGD are not due to rapid translocation of this important salmonid pathogen from the same area.

History

Publication title

Pathogens

Volume

8

Issue

4

Article number

244

Number

244

Pagination

1-18

ISSN

2076-0817

Department/School

Institute for Marine and Antarctic Studies

Publisher

MDPIAG

Place of publication

Switzerland

Rights statement

Copyright 2019 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Aquaculture fin fish (excl. tuna)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC