eCite Digital Repository

Reconciling unevenly sampled paleoclimate proxies: a Gaussian kernel correlation multiproxy reconstruction


Roberts, JL and Tozer, CR and Ho, M and Kiem, AS and Vance, TR and Jong, LM and McCormack, FS and van Ommen, TD, Reconciling unevenly sampled paleoclimate proxies: a Gaussian kernel correlation multiproxy reconstruction, Journal of Environmental Informatics, 35, (2) ISSN 1726-2135 (2019) [Refereed Article]


Copyright Statement

Copyright 2019 ISEIS

DOI: doi:10.3808/jei.201900420


Reconstructing past hydroclimatic variability using climate-sensitive paleoclimate proxies provides context to our relatively short instrumental climate records and a baseline from which to assess the impacts of human-induced climate change. However, many approaches to reconstructing climate are limited in their ability to address sampling variability inherent in different climate proxies. We iteratively optimise an ensemble of possible reconstruction data series to maximise the Gaussian kernel correlation of Rehfeld et al. (2011) which reconciles differences in the temporal resolution of both the target variable and proxies or covariates. The reconstruction method is evaluated using synthetic data with different degrees of sampling variability and noise. Two examples using paleoclimate proxy records and a third using instrumental rainfall data with missing values are used to demonstrate the utility of the method. While the Gaussian kernel correlation method is relatively computationally expensive, it is shown to be robust under a range of data characteristics and will therefore be valuable in analyses seeking to employ multiple input proxies or covariates.

Item Details

Item Type:Refereed Article
Keywords:paleoclimate, ice core records, correlation methods, climate, Gaussian kernel correlation, multiproxy, paleoclimate, reconstruction, uneven sampling
Research Division:Earth Sciences
Research Group:Physical geography and environmental geoscience
Research Field:Glaciology
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Understanding climate change
Objective Field:Climate variability (excl. social impacts)
UTAS Author:Roberts, JL (Dr Jason Roberts)
UTAS Author:Vance, TR (Dr Tessa Vance)
UTAS Author:Jong, LM (Dr Lenneke Jong)
UTAS Author:McCormack, FS (Dr Felicity McCormack)
UTAS Author:van Ommen, TD (Dr Tas van Ommen)
ID Code:135521
Year Published:2019
Web of Science® Times Cited:1
Deposited By:Oceans and Cryosphere
Deposited On:2019-10-29
Last Modified:2020-08-11
Downloads:12 View Download Statistics

Repository Staff Only: item control page