University of Tasmania
Browse
14854.full.pdf (2.54 MB)

Differential short-term plasticity at convergent inhibitory synapses to the substantia nigra pars reticulata

Download (2.54 MB)
journal contribution
posted on 2023-05-20, 02:08 authored by William ConnellyWilliam Connelly, Schulz, JM, Lees, G, Reynolds, JNJ
Inhibitory projections from the striatum and globus pallidus converge onto GABAergic projection neurons of the substantia nigra pars reticulata (SNr). Based on existing structural and functional evidence, these pathways are likely to differentially regulate the firing of SNr neurons. We sought to investigate the functional differences in inhibitory striatonigral and pallidonigral traffic using whole-cell voltage clamp in brain slices with these pathways preserved. We found that striatonigral IPSCs exhibited a high degree of paired-pulse facilitation. We tracked this facilitation over development and found the facilitation as the animal aged, but stabilized by postnatal day 17 (P17), with a paired pulse ratio of 2. We also found that the recovery from facilitation accelerated over development, again, reaching a stable phenotype by P17. In contrast, pallidonigral synapses show paired-pulse depression, and this depression could be solely explained by presynaptic changes. The mean paired-pulse ratio of 0.67 did not change over development, but the recovery from depression slowed over development. Pallidonigral IPSCs were significantly faster than striatonigral IPSCs when measured at the soma. Finally, under current clamp, prolonged bursts of striatal IPSPs were able to consistently silence the pacemaker activity of nigral neurons, whereas pallidal inputs depressed, allowing nigral neurons to reinstate firing. These findings highlight the importance of differential dynamics of neurotransmitter release in regulating the circuit behavior of the basal ganglia.

History

Publication title

Journal of Neuroscience

Volume

30

Issue

44

Pagination

14854-14861

ISSN

0270-6474

Department/School

Tasmanian School of Medicine

Publisher

Soc Neuroscience

Place of publication

11 Dupont Circle, Nw, Ste 500, Washington, USA, Dc, 20036

Rights statement

Copyright 2010 the authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC