University of Tasmania
Browse
128627 - Biomass consumption by surface fires across Earth's most fire&%238208;prone continent - accepted.pdf (1.72 MB)

Biomass consumption by surface fires across Earth's most fire prone continent

Download (1.72 MB)
journal contribution
posted on 2023-05-19, 21:43 authored by Murphy, BP, Lynda PriorLynda Prior, Cochrane, MA, Grant WilliamsonGrant Williamson, David BowmanDavid Bowman
Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia‐wide field‐based survey (at 113 locations) across large‐scale macroecological gradients (climate, productivity and fire regimes) enabled estimation of how biomass combustion by surface fire directly affects continental‐scale carbon budgets. In terms of biomass consumption, we found clear trade‐offs between the frequency and severity of surface fires. In temperate southern Australia, characterised by less frequent and more severe fires, biomass consumed per fire was typically very high. In contrast, surface fires in the tropical savannas of northern Australia were very frequent but less severe, with much lower consumption of biomass per fire (about a quarter of that in the far south). When biomass consumption was expressed on an annual basis, biomass consumed was far greater in the tropical savannas (> 20 times that of the far south). This trade‐off is also apparent in the ratio of annual carbon consumption to NPP. Across Australia's naturally vegetated land area, annual carbon consumption by surface fire is equivalent to about 11% of NPP, with a sharp contrast between temperate southern Australia (6%) and tropical northern Australia (46%). Our results emphasise that fire management to reduce greenhouse gas emissions should focus on fire‐prone tropical savanna landscapes, where the vast bulk of biomass consumption occurs globally. In these landscapes, grass biomass is a key driver of frequency, intensity and combustion completeness of surface fires, and management actions that increase grass biomass are likely to lead to increases in greenhouse gas emissions from savanna fires.

History

Publication title

Global Change Biology

Volume

25

Pagination

254-268

ISSN

1354-1013

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

Copyright 2018 Wiley

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified; Natural hazards not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC