University of Tasmania
Browse

File(s) under permanent embargo

Tracking the vortex core from a surface-piercing flat plate by particle image velocimetry and numerical simulation

journal contribution
posted on 2023-05-19, 19:49 authored by Ashworth Briggs, A, Alan FlemingAlan Fleming, Jonathan DuffyJonathan Duffy, Jonathan BinnsJonathan Binns
The wake flow around the tip of a surface piercing flat plate at an angle of incidence was studied using two-dimensional particle image velocimetry as part of benchmarking the particle image velocimetry technique on the moving carriage in the Australian Maritime College towing tank. Particle image velocimetry results were found to be in close agreement with those of the benchmarking work presented by the Hydro Testing Alliance, and a method of tracking the tip-vortex core near a free surface throughout numerical simulation has been demonstrated. Issues affecting signal to noise ratio, such as specula reflections from the free surface and model geometry were overcome through the use of fluorescing particles and a high-pass optical filter. Numerical simulations using the ANSYS CFX Solver with the volume of fluid method were validated against the experimental results, and a methodology was developed for tracking the location of the wandering vortex core experimentally and through simulation. The ability of the scale-adaptive simulation shear stress transport turbulence model and the shear stress transport model to simulate three-dimensional flow with high streamline curvature was compared. The scale-adaptive simulation shear stress transport turbulence model was found to provide a computationally less resource-intensive method of simulating a complex flow topology with large eddies, providing an insight into a possible cause of tip-vortex aperiodic wandering motion. At high angles of attack, vortex shedding from the leading edge separation of the test geometry is identified as a possible cause of the wandering phenomena. In this study, the vortex centre and point of extreme core velocity were found not to be co-located. The point of extreme stream wise velocity within the vortex core was found to be located within half the vortex radius of the vortex centre.

History

Publication title

Institution of Mechanical Engineers. Proceedings. Part M: Journal of Engineering for the Maritime Environment

Volume

233

Pagination

793-808

ISSN

1475-0902

Department/School

Australian Maritime College

Publisher

Sage Publications Ltd

Place of publication

United Kingdom

Rights statement

Copyright 2018 IMechE

Repository Status

  • Restricted

Socio-economic Objectives

Domestic passenger water transport (e.g. ferries)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC