University of Tasmania
Browse

File(s) under permanent embargo

Epothilone D accelerates disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis

journal contribution
posted on 2023-05-19, 19:32 authored by Clark, JA, Catherine BlizzardCatherine Blizzard, Monique BreslinMonique Breslin, Yeaman, EJ, Lee, KM, Jyoti ChuckowreeJyoti Chuckowree, Tracey DicksonTracey Dickson

Aims: Degeneration of the distal neuromuscular circuitry is a hallmark pathology of Amyotrophic Lateral Sclerosis (ALS). The potential for microtubule dysfunction to be a critical pathophysiological mechanism in the destruction of this circuitry is increasingly being appreciated. Stabilization of microtubules to improve neuronal integrity and pathology has been shown to be a particularly favourable approach in other neurodegenerative diseases. We present evidence here that treatment with the microtubule‐targeting compound Epothilone D (EpoD) both positively and negatively affects the spinal neuromuscular circuitry in the SOD1G93A mouse model of ALS.

Methods: SOD1G93A mice were treated every 5 days with 2 mg/kg EpoD. Evaluation of motor behaviour, neurological phenotype and survival was completed, with age‐dependent histological characterization also conducted, using the thy1‐YFP mouse. Motor neuron degeneration, axonal integrity, neuromuscular junction (NMJ) health and gliosis were also assessed.

Results: EpoD treatment prevented loss of the spinal motor neuron soma, and distal axon degeneration, early in the disease course. This, however, was not associated with protection of the NMJ synapse and did not improve motor phenotype or clinical progression. EpoD administration was also found to be neurotoxic at later disease stages. This was evidenced by accelerated motor neuron cell body loss, increasing gliosis, and was associated with detrimental outcomes to motor behaviour, clinical assessment and survival.

Conclusions: The results suggest that EpoD accelerates disease progression in the SOD1G93A mouse model of ALS, and highlights that the pathophysiological involvement of microtubules in ALS is an evolving and underappreciated phenomenon.

History

Publication title

Neuropathology and Applied Neurobiology

Volume

44

Issue

6

Pagination

590-605

ISSN

0305-1846

Department/School

Menzies Institute for Medical Research

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

Copyright 2018 British Neuropathological Society

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC