University of Tasmania
Browse

File(s) under permanent embargo

Substituent effects in the decarboxylation reactions of coordinated arylcarboxylates in dinuclear copper complexes, [(napy)Cu2(O2CC6H4X)]+

journal contribution
posted on 2023-05-19, 14:41 authored by Jin, Q, Li, J, Ariafard, A, Allan CantyAllan Canty, O'Hair, RAJ
A combination of gas-phase ion trap mass spectrometry experiments and density functional theory (DFT) calculations have been used to examine the role of substituents on the decarboxylation of 25 different coordinated aromatic carboxylates in binuclear complexes, [(napy)Cu2(O2CC6H4X)]+, where napy is the ligand 1,8-naphthyridine (molecular formula, C8H6N2) and X = H and the ortho (o), meta (m) and para (p) isomers of F, Br, CN, NO2, CF3, OAc, Me and MeO. Two competing unimolecular reaction pathways were found: decarboxylation to give the organometallic cation [(napy)Cu2(C6H4X)]+ or loss of the neutral copper benzoate to yield [(napy)Cu]+. The substituents on the aryl group influence the branching ratios of these product channels, but decarboxylation is always the dominant pathway. Density functional theory calculations reveal that decarboxylation proceeds via two transition states. The first enables a change in the coordination mode of the coordinated benzoate in [(napy)Cu2(O2CC6H4X)]+ from the thermodynamically favoured O,O-bridged form to the O-bound form, which is the reactive conformation for the second transition state which involves extrusion of CO2 with concomitant formation of the CO2 coordinated organometallic cation, [(napy)Cu2(C6H4X)(CO2)]+, which then loses CO2 in the final step to yield [(napy)Cu2(C6H4X)]+. In all cases the barrier is highest for the second transition state. The o-substituted benzoates show a lower activation energy than the m-substituted ones, while the p-substituted ones have the highest energy, which is consistent with the experimentally determined normalised collision energy required to induce fragmentation of [(napy)Cu2(O2CC6H4X)]+.

History

Publication title

European Journal of Mass Spectrometry

Volume

23

Issue

6

Pagination

351-358

ISSN

1469-0667

Department/School

School of Natural Sciences

Publisher

Im Publications

Place of publication

6 Charlton Mill, Charlton, Chichester,, W Sussex, England, Po18 0Hy

Rights statement

Copyright 2017 the Authors

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC