University of Tasmania
Browse
CarinsMurphy-M.R._2017_PLOS-One.pdf (16.98 MB)

Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms

Download (16.98 MB)
journal contribution
posted on 2023-05-19, 13:21 authored by Madeline Carins-Murphy, Gregory JordanGregory Jordan, Timothy BrodribbTimothy Brodribb
Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by “passive dilution” via expansion of surrounding cells. However, it is not known whether this ‘passive dilution’ mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms’ evolutionary success. Consequently, we sought to determine whether the ‘passive dilution’ mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange.

Funding

Australian Research Council

History

Publication title

PLoS One

Volume

12

Issue

9

Article number

e0185648

Number

e0185648

Pagination

1-18

ISSN

1932-6203

Department/School

School of Natural Sciences

Publisher

Public Library of Science

Place of publication

United States

Rights statement

Copyright 2017 Cairns Murphy et al. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC