University of Tasmania
Browse
wyber2017_RS9.pdf (2.62 MB)

Do daily and seasonal trends in leaf solar induced fluorescence reflect changes in photosynthesis, growth or light exposure?

Download (2.62 MB)
journal contribution
posted on 2023-05-19, 10:23 authored by Wyber, R, Zbynek MalenovskyZbynek Malenovsky, Ashcroft, MB, Osmond, B, Robinson, SA
Solar induced chlorophyll fluorescence (SIF) emissions of photosynthetically active plants retrieved from space-borne observations have been used to improve models of global primary productivity. However, the relationship between SIF and photosynthesis in diurnal and seasonal cycles is still not fully understood, especially at large spatial scales, where direct measurements of photosynthesis are unfeasible. Motivated by up-scaling potential, this study examined the diurnal and seasonal relationship between SIF and photosynthetic parameters measured at the level of individual leaves. We monitored SIF in two plant species, avocado (Persea Americana) and orange jasmine (Murraya paniculatta), throughout 18 diurnal cycles during the Southern Hemisphere spring, summer and autumn, and compared them with simultaneous measurements of photosynthetic yields, and leaf and global irradiances. Results showed that at seasonal time scales SIF is principally correlated with changes in leaf irradiance, electron transport rates (ETR) and constitutive heat dissipation (YNO; p < 0.001). Multiple regression models of correlations between photosynthetic parameters and SIF at diurnal time scales identified leaf irradiance as the principle predictor of SIF (p < 0.001). Previous studies have identified correlations between photosynthetic yields, ETR and SIF at larger spatial scales, where heterogeneous canopy architecture and landscape spatial patterns influence the spectral and photosynthetic measurements. Although this study found a significant correlation between leaf-measured YNO and SIF, future dedicated up-scaling experiments are required to elucidate if these observations are also found at larger spatial scales.

History

Publication title

Remote Sensing

Volume

9

Issue

6

Article number

604

Number

604

Pagination

1-19

ISSN

2072-4292

Department/School

School of Geography, Planning and Spatial Sciences

Publisher

M D P I AG

Place of publication

Switzerland

Rights statement

Copyright 2017 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC