University of Tasmania
Browse
Diapycnal and Isopycnal Transports.pdf (1.46 MB)

Diapycnal and isopycnal transports in the Southern Ocean estimated by a box inverse model

Download (1.46 MB)
journal contribution
posted on 2023-05-19, 08:23 authored by Katsumata, K, Bernadette SloyanBernadette Sloyan, Masuda, S
Quantitative descriptions of Circumpolar Deep Water upwelling and evolution into a lighter mode and heavier bottom waters in the Southern Ocean are still not well constrained. Here, data from two occupations of eight hydrographic sections are combined and used in a box inverse model to estimate isopycnal and diapycnal transports in the Southern Ocean. A mixed layer box allows diapycnal transports in the surface mixed layer to be estimated separately. Current velocity at 1000 dbar was constrained by the mean velocity field estimated from subsurface float drift data. The estimated isopycnal transports are largely consistent with past estimates and with outputs of three ocean general circulation models. The estimated subduction and upwelling at the base of the Southern Ocean mixed layer show that Upper Circumpolar Deep Water upwells [16 ± 15 and 17 ± 21 Sv (where 1Sv ≡ 106m3 s-1) by different inversion methods] and evolves into heavier Lower Circumpolar Deep Water (5 ± 13 and 6 ± 18 Sv) and Bottom Water (8 ± 9 and 8 ± 13 Sv) or lighter Mode and Intermediate Waters (9 ± 18 and 13 ± 24 Sv). Meridional transport in the surface mixed layer is due to northward Ekman transport and mostly southward eddy transport. In seasonal ice-covered areas near Antarctica, a significant (14 ±14 Sv) southward transport was found. The southward eddy transport is largest north of the Antarctic Circumpolar Current and decreases poleward because of the poleward decrease in the eddy diffusivity. The interior diapycnal transports, which can be either upward (gaining buoyancy) or downward (gaining density), are comparable in magnitude to the horizontal diapycnal transports within the surface mixed layer.

History

Publication title

Journal of Physical Oceanography

Volume

43

Issue

11

Pagination

2270-2287

ISSN

0022-3670

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

Copyright 2013 American Meteorological Society

Repository Status

  • Open

Socio-economic Objectives

Oceanic processes (excl. in the Antarctic and Southern Ocean)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC