University of Tasmania
Browse
118752.pdf (749.7 kB)

Snow thickness profiling on Antarctic sea-ice with GPR - rapid and accurate measurements with the potential to upscale needles to a haystack

Download (749.7 kB)
journal contribution
posted on 2023-05-19, 07:48 authored by Pfaffhuber, AA, Jan LieserJan Lieser, Haas, C
Snow thickness on sea ice is a largely under-sampled parameter, yet of importance for the sea-ice mass balance and for satellite based sea-ice thickness estimates and thus our general understanding of global ice-volume change. Traditional direct thickness measurements with meter sticks can provide accurate but only spot information, referred to as "needles" due to their pinpoint focus and information while airborne and satellite remote sensing snow products, referred to as "the haystack" have large uncertainties due to their scale. We demonstrate the remarkable accuracy and applicability of ground penetrating radar (GPR) snow-thickness measurements by comparing them with in-situ, meter-stick data from two field campaigns to Antarctica in late winter/early spring. The efficiency and millimeter- to centimeter accuracy of GPR enables practitioners to acquire extensive, semi-regional data with the potential to upscale "needles" to "the haystack" and to potentially calibrate satellite remote sensing products that we confirm to derive roughly 30 % of the in-situ thickness. We find the radar wave propagation velocity in snow to be rather constant (+/- 6%), encouraging regional snow-thickness surveys. Snow thinner than 10 cm is under the detection limit with the off-the-shelf GPR setup utilized in our study.

History

Publication title

Geophysical Research Letters

Volume

44

Issue

15

Pagination

7836-7844

ISSN

0094-8276

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2017 The Authors. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/

Repository Status

  • Open

Socio-economic Objectives

Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC