University of Tasmania
Browse

File(s) under permanent embargo

Nonlinear behaviour of interacting mid-latitude atmospheric vortices

journal contribution
posted on 2023-05-19, 06:50 authored by Jason CosgroveJason Cosgrove, Lawrence ForbesLawrence Forbes
Nonlinear behaviour of interacting large-scale atmospheric vortices is considered. These vortices are approximately fifteen kilometres high and can have diameters of hundreds if not thousands of kilometres, and so they can be thought of as large flat structures. The air is weakly compressible, and the fluid motion is subject to the Coriolis pseudo-force, due to the Earth being in a non-inertial rotating reference frame. The vortices studied are coupled binary systems. The high or low pressure in each vortex is modelled initially using an exponential function. A spectral method is presented, for obtaining accurate numerical solutions. Nonlinear results in the f-plane approximation are discussed at mid-latitudes. It is found that the vortices do or do not interact, depending on their initial radii and the location of their centres. A scaling law is found numerically for the ratio of these two quantities, which determines whether interaction does occur.

History

Publication title

Journal of Engineering Mathematics

Volume

104

Pagination

41-62

ISSN

0022-0833

Department/School

School of Natural Sciences

Publisher

Kluwer Academic Publ

Place of publication

Van Godewijckstraat 30, Dordrecht, Netherlands, 3311 Gz

Rights statement

© Springer Science+Business Media Dordrecht 2016

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC