University of Tasmania
Browse
remotesensing-09-00647-v2.pdf (4.33 MB)

Poppy crop height and capsule volume estimation from a single UAS flight

Download (4.33 MB)
journal contribution
posted on 2023-05-19, 06:47 authored by Iqbal, F, Arko LucieerArko Lucieer, Kara BarryKara Barry, Wells, R
The objective of this study was to estimate poppy plant height and capsule volume with remote sensing using an Unmanned Aircraft System (UAS). Data were obtained from field measurements and UAS flights over two poppy crops at Cambridge and Cressy in Tasmania. Imagery acquired from the UAS was used to produce dense point clouds using structure from motion (SfM) and multi-view stereopsis (MVS) techniques. Dense point clouds were used to generate a digital surface model (DSM) and orthophoto mosaic. An RGB index was derived from the orthophoto to extract the bare ground spaces. This bare ground space mask was used to filter the points on the ground, and a digital terrain model (DTM) was interpolated from these points. Plant height values were estimated by subtracting the DSM and DTM to generate a Crop Height Model (CHM). UAS-derived plant height (PH) and field measured PH in Cambridge were strongly correlated with R2 values ranging from 0.93 to 0.97 for Transect 1 and Transect 2, respectively, while at Cressy results from a single flight provided R2 of 0.97. Therefore, the proposed method can be considered an important step towards crop surface model (CSM) generation from a single UAS flight in situations where a bare ground DTM is unavailable. High correlations were found between UAS-derived PH and poppy capsule volume (CV) at capsule formation stage (R2 0.74), with relative error of 19.62%. Results illustrate that plant height can be reliably estimated for poppy crops based on a single UAS flight and can be used to predict opium capsule volume at capsule formation stage.

History

Publication title

Remote Sensing

Volume

9

Issue

7

Article number

647

Number

647

Pagination

1-17

ISSN

2072-4292

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

MDPIAG

Place of publication

Switzerland

Rights statement

© 2017 by the authors. Licensed under Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Plant extract crops

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC