University of Tasmania
Browse

File(s) under permanent embargo

Application of local binary patterns in digital images to estimate botanical composition in mixed alfalfa-grass fields

journal contribution
posted on 2023-05-19, 06:18 authored by McRoberts, KC, Benson, BM, Mudrak, EL, David ParsonsDavid Parsons, Cherney, DJR
Botanical composition in mixed stands of alfalfa and grass is a critical parameter in equations estimating harvest fiber concentration for dairy rations. Composition is difficult to estimate by visual observation. Digital image analysis in mixed stands could reduce botanical composition uncertainty and improve spring harvest management decisions. Mixed stands were sampled (n = 168) in farmers’ fields in Tompkins County, New York in May 2011. A digital image was taken of standing samples at 5-Megapixels resolution using a Canon PowerShot A3100IS, and alfalfa and grass height relationships were recorded. After clipping representative samples at 10-cm above ground level, samples were manually separated into alfalfa (Medicago sativa L.) and timothy grass (Phleum pratense L.), and dried to calculate fractions on a dry matter basis. Uniform rotation invariant local binary patterns (LBP) were extracted from whole images and 64 × 64 pixel tiles, and were used to develop regression equations estimating grass fraction. Tiles were manually classified as alfalfa (0), grass (1) or unclassifiable. An iterative process selected most accurate local binary pattern operator settings. Grass fraction was estimated in three regression model development approaches: (1) using average tile LBP histogram bins from whole images and botanical height relationships, (2) developing a binary tile classification model from tile LBP histogram bins, and using tile model-predicted grass probability averaged for tiles in whole images (grass coverage estimate) and botanical height relationships as inputs in whole image models, and (3) using LBP histogram bins extracted directly from whole images (1024 by 1024 pixel square) and height relationships. Predictive accuracy in whole image models using tile LBP histogram averages was highest for models generated from LBP tile histogram bin means (R2pred up to 0.847), followed closely by combined tile models and whole image models (R2pred up to 0.807), with pairwise correlations between tile model-generated grass coverage estimates and sample grass fraction up to 0.895. Local binary patterns are effective in differentiating alfalfa and grass under field conditions, because the method is robust to changes in color and illumination. Furthermore, key LBP histogram bins (e.g., symmetric edges) strongly differentiate alfalfa and grass in tiles. The LBP method is promising based on this study, but further evaluation under diverse field conditions, including different cameras and grass species, is necessary to assess usefulness.

History

Publication title

Computers and Electronics in Agriculture

Volume

123

Pagination

95-103

ISSN

0168-1699

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Elsevier BV

Place of publication

Netherlands

Rights statement

Copyright 2016 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Plant product traceability and quality assurance (excl. forest products)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC