University of Tasmania
Browse

File(s) under permanent embargo

Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates

journal contribution
posted on 2023-05-19, 05:24 authored by Abujabhah, IS, Richard DoyleRichard Doyle, Sally BoundSally Bound, John BowmanJohn Bowman

Purpose The increased use of biochar as a soil amendment to alleviate the impact of agricultural practices on climate change has been a motivation for many studies to determine the effects of biochar on soil properties, particularly the abundance and activities of soil microbes and related biological processes. This study investigates the impact of different application rates of wood-derived biochar on community structure, nitrogen-cycling and methanotrophic bacteria in three soil types.

Materials and methods Biochar was added at 0, 2.5, 5 and 10% w/w to black clay loam (BCL, Vertosol), red loam (RL, Dermosol) and brown sandy loam (BSL, Kurosol) soils. Soil chemical analysis and 16S rRNA gene amplicon sequencing using the IIlumina Mi-Seq platform were conducted on initial samples and after 10-month incubation.

Results and discussion The results indicated that the addition of biochar loading levels to the different soils had a significant impact on NH4 and NO3, total C and N, pH, electrical conductivity (EC) and soil moisture content. These changes were reflected in significant differences in the bacterial diversity between biochar treatments in the BSL and RL soils, while the BCL soil was more resilient to change. Complete ammonia-oxidising (Nitrospira) and nitrite-oxidising bacteria (NOB) were more abundant than standard ammonia-oxidising bacteria (AOB) in all soils. Increased biochar loading raised the abundance of nitrifying bacteria in BCL soil while Nitrospira became more abundant in BSL soil. Biochar addition affected the abundance of certain N2 fixer groups in a soil-dependent manner. Strong positive correlations were observed in Rhizobium (r = 0.99) and Azospirillum abundance (r = 0.70) with increased biochar loading rates in BCL. Greater biochar loading also significantly increased the relative abundance of methanotrophs, especially in BCL soil.

Conclusions The impact of biochar on community structure and nitrogen-cycling bacteria depended on soil types and biochar rates which correlated to the differences in soil properties. Overall, the abundance of nitrogen-cycling bacterial groups seemed to be most affected by the changes in soil conditions, including aeration, C/N ratio, nutrients and pH in relation to biochar application in different soils. These changes show that short-term biochar loading influences community structure and leads to increases in populations of methanotrophic and nitrifying bacteria.

Funding

Horticulture Innovation Australia

History

Publication title

Journal of Soils and Sediments

Volume

18

Pagination

148-158

ISSN

1439-0108

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Springer

Place of publication

Tiergartenstr 17, Heidelberg, 69121 Germany

Rights statement

Copyright Springer-Verlag Berlin Heidelberg 2017

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable plant production not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC