University of Tasmania
Browse

File(s) under permanent embargo

Time-dependent sensitivity of a process-based ecological model

journal contribution
posted on 2023-05-19, 04:49 authored by Song, X, Bryan, BA, Almeida, AC, Paul, KI, Zhao, G, Ren, Y
Sensitivity analysis is useful for understanding the behaviour of process-based ecological models. Often, time influences many model processes. Hence, the sensitivity of model outputs to variation in input parameters may also change with simulation period. We assessed the time-dependence of parameter sensitivity in a well-established forest growth model 3-PG (Physiological Principles for Predicting Growth) (Landsberg and Waring, 1997) as a case study. We used a screening method to select influential parameters for two key model outputs, i.e., stand volume and foliage biomass, then applied the Fourier amplitude sensitivity test (FAST) to quantify the sensitivity of the outputs to these selected parameters. Sensitivities were assessed on an annual time-step spanning 5–50 years of forest stand age. The influence of climatic and soil variables on time-dependent sensitivities was also quantified. We found that the sensitivities of most parameters changed substantially with forest stand age. Different climate and soil data also influenced the sensitivities of some parameters. Time-dependent sensitivity analysis provided much greater insight into model structure and behaviour than previous snapshot sensitivity analyses. Failing to account for time-dependence in sensitivity analysis could lead to misguided efforts in model calibration and parameter refinement, and the mis-identification of insensitive parameters for default value allocation. We concluded that sensitivity analysis should be conducted at simulation periods compatible with the process of interest. A more comprehensive sensitivity analysis scheme is required for temporal models to explore parameter sensitivities over the full simulation period and over the full variation in forcing data.

History

Publication title

Ecological Modelling: International Journal on Ecological Modelling and Engineering and Systems Ecology

Volume

265

Pagination

114-123

ISSN

0304-3800

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2013 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC